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Abstract
Recent advances in natural-language processing have given rise to a new kind of AI architecture: the language agent. By 
repeatedly calling an LLM to perform a variety of cognitive tasks, language agents are able to function autonomously to 
pursue goals specified in natural language and stored in a human-readable format. Because of their architecture, language 
agents exhibit behavior that is predictable according to the laws of folk psychology: they function as though they have desires 
and beliefs, and then make and update plans to pursue their desires given their beliefs. We argue that the rise of language 
agents significantly reduces the probability of an existential catastrophe due to  loss of control over an AGI. This is because 
the probability of such an existential catastrophe is proportional to the difficulty of aligning AGI systems, and language agents 
significantly reduce that difficulty. In particular, language agents help to resolve three important issues related to aligning 
AIs: reward misspecification, goal misgeneralization, and uninterpretability.
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1  Misalignment and existential catastrophe

There is a significant chance that artificial general intelli-
gence will be developed in the not-so-distant future—by 
2070, for example. How likely is it that the advent of AGI 
will lead to an existential catastrophe for humanity? Here it 
is worth distinguishing between two possibilities: an exis-
tential catastrophe could result from humans losing control 
over an AGI system (call this a misalignment catastrophe), 
or an existential catastrophe could result from humans using 
an AGI system deliberately to bring that catastrophe about 
(call this a malicious actor catastrophe). In what follows, we 
are interested in assessing the probability of a misalignment 
catastrophe rather than a malicious actor catastrophe.

Carlsmith (2021) helpfully structures discussion of the 
probability of a misalignment catastrophe around six propo-
sitions. Because we are interested in the probability of a 

misalignment catastrophe conditional on the development 
of AGI, we focus our attention on the final four of these 
propositions, which we summarize as follows:

1. Of the following two options, the first will be much more 
difficult:

a. Build AGI systems with an acceptably low prob-
ability of engaging in power-seeking behavior.

b. Build AGI systems that perform similarly but do not 
have an acceptably low probability of engaging in 
power-seeking behavior.

2. Some AGI systems will be exposed to inputs which 
cause them to engage in power-seeking behavior.

3. This power-seeking will scale to the point of perma-
nently disempowering humanity.

4. This disempowerment will constitute an existential 
catastrophe.

Carlsmith assigns a probability of 0.4 to (1) conditional 
on the rise of AGI, a probability of 0.65 to (2) conditional on 
(1) and the rise of AGI, a probability of 0.4 to (3) conditional 
on (1), (2), and the rise of AGI, and a probability of 0.95 to 
(4) conditional on (1–3) and the rise of AGI. This translates 
into a probability of approximately 0.1 (10%) for a misalign-
ment catastrophe conditional on the rise of AGI.
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We believe that the development of a new kind of AI 
architecture, the language agent, ought to significantly 
decrease assessments of these probabilities. By repeatedly 
calling an LLM to perform a variety of cognitive tasks, lan-
guage agents are able to function autonomously to pursue 
goals specified in natural language and stored in a human-
readable format. We suggest that the development of lan-
guage agents reduces the probability of (1) conditional on 
the rise of AGI very substantially, the probability of (2) con-
ditional on (1) and the rise of AGI moderately, and the prob-
ability of (3) conditional on (1), (2), and the rise of AGI very 
substantially. We work through two numerical examples in 
Sect. 5; in the meantime, suffice it to say that we believe 
that updating on the rise of language agents should reduce 
rational credences in a misalignment catastrophe conditional 
on the development of AGI by approximately one order of 
magnitude.

Because language agent architectures have the poten-
tial to reduce the risk of a misalignment catastrophe in so 
many ways, and because the machine learning communi-
ty’s actions in the near future will determine how widely 
deployed language agent architectures are and thus how 
much of this potential risk reduction is realized, we believe 
that language agents are an underappreciated crux in think-
ing about existential risk related to AI. Priority should be 
given to further research into the capabilities of language 
agents and further support for the development of AI sys-
tems which implement language agent architectures.

Here is our plan for what follows. Section 2 introduces 
some of the safety concerns about AI systems created using 
deep learning that motivate worries about a misalignment 
catastrophe. Section 3 describes the architecture of language 
agents in more detail. Section 4 returns to the safety con-
cerns from Sect. 2 and explains how language agents help 
to address them. Section 5 describes the implications of our 
arguments for the probability of a misalignment catastrophe. 
Section 6 concludes by responding to some potential con-
cerns about language agents.

2  Difficulties with alignment

In deep learning, we train an AI system incorporating an 
artificial neural network to achieve a goal by specifying a 
mathematical function that encodes the goal (the objective 
function) and then using a learning algorithm to adjust the 
weights in the network so that the system’s performance 
comes closer to maximizing or minimizing that function. 
Say that an AI system is fully aligned if it has an accept-
ably low probability of engaging in power-seeking behav-
ior. There are several ways an AI system trained using deep 
learning could end up less than fully aligned.

2.1  Reward misspecification

A first challenge is reward misspecification.1 When train-
ing an AI, we may experiment with different objective 
functions. In reinforcement learning, the goal is to define a 
reward function that gives the agent a reward for performing 
actions that produce desired states. In supervised learning, 
the goal is to define a loss function that is minimized when 
the system performs its task optimally.

The problem is that it is difficult to design a reward or 
loss function that properly encodes a goal. For example, 
Popov et al. (2017) set out to teach a reinforcement learning 
agent to stack red Legos on top of blue Legos. They tried 
to capture this goal by rewarding the agent for the height 
of the bottom of the red Lego, since stacked red Legos are 
higher off the ground than unstacked red Legos. However, 
the agent did not learn to stack Legos; instead, it learned 
to flip red Legos over, thus elevating their bottoms without 
stacking them.

To appreciate the difficulty of choosing the right reward 
function, consider the common reinforcement learning prac-
tice of reward shaping. Reinforcement learning agents often 
encounter sparse reward functions. If one rewards an agent 
only when it wins a game, for example, it may have difficulty 
identifying which of its behaviors leading up to that outcome 
should be repeated in future games. Reward shaping solves 
the problem of sparse reward functions by rewarding the 
agent for important subgoals on the way to achieving its 
real goal.

However, reward shaping can also lead to reward mis-
specification. For example, Amodei and Clark (2016) con-
sider the case of teaching a reinforcement learning agent 
to play Coast Runners, a game in which the player pilots a 
boat. A human player would immediately recognize that the 
game designers’ intention is for players to race each other 
around the track. However, the reinforcement learning setup 
rewarded the agent with a score for hitting targets along the 
way. Instead of finishing the race, the AI  learned how to 
loop the boat in a small lagoon, hitting intermediate targets 
repeatedly to achieve a high score. Rather than rewarding the 
agent for the final goal, the experimental design rewarded 
it for intermediate means: “the agent was given a shaping 
reward for hitting green blocks along the racetrack, which 
changed the optimal policy to going in circles and hitting 
the same green blocks over and over again” (Krakovna 
et al. 2020). A reward optimizer cannot see the distinction 

1 The phenomenon we call reward misspecification is sometimes also 
called “reward hacking” (e.g. by Amodei et al. 2016), “specification 
gaming” (e.g. by Shah et  al 2022), or, in the context of supervised 
learning, “outer misalignment.”
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between intrinsic and instrumental goals: it only optimizes 
for the reward function it has.

Worryingly, reward misspecification is prone to arise in 
the context of reinforcement learning with human feedback 
(RLHF) (Christiano et al. 2017). Because they optimize for 
human approval, RLHF agents sometimes learn to deceive 
human assessors. For example, one agent was given the task 
of grasping a ball. It learned to trick human assessors by 
hovering its arm between the camera and the ball. Similarly, 
Perez et al. (2022) found that large language models trained 
by RLHF tend to behave sycophantically, answering differ-
ently depending on what they expect their human users to 
think.

There is a long list of examples of reward misspecifica-
tion involving many kinds of AI, many kinds of games, and 
many different types of reward. In Sect. 4, we’ll argue that 
language agents offer a systematic solution to the problem 
of reward misspecification.

2.2  Goal misgeneralization

Another challenge for alignment is goal misgeneralization 
(Langosco et al. 2022; Shah et al. 2022).2 Even when the 
objective function for a task has been appropriately speci-
fied, an AI system may learn a strategy which achieves high 
performance on that task in some circumstances but not 
others. ML models are trained on data, environments, and 
problems that can be different from the data, environments, 
and problems to which they are later exposed when they are 
deployed. When an AI is used in a new context that does 
not resemble the one in which it was trained, we say that 
this context is out-of-distribution. In cases of goal misgen-
eralization, the AI succeeds during its training by pursuing a 
different goal than what its designers intended (it learns the 
wrong rule). This is manifested by decreased performance 
in out-of-distribution contexts.

For example, Shah et al. (2022) trained an AI in a “Mon-
ster Gridworld.” The intended goal was for the AI to col-
lect apples and avoid being attacked by monsters. The AI 
could also collect shields, which protected it from monster 
attacks. The AI learned to collect shields during training 
in a monster-rich environment, and then entered an out-of-
distribution environment with no monsters. In this monster-
free setting, the AI continued to collect shields. Instead of 
learning to collect apples and value shields instrumentally 
as a way of avoiding monster attacks, it instead learned to 
collect both apples and shields.

Goal misgeneralization occurs because different features 
of the training environment are inevitably correlated with 

one another. Even when the reward function has not been 
misspecified, whenever a trainer ties rewards to one feature, 
they inevitably also tie reward to the features correlated 
with it. Two particular types of goal misgeneralization are 
of special interest: errors related to means-end reasoning and 
errors related to inductive bias.

Let’s start with errors related to means-end reasoning.3 
When an agent is rewarded for pursuing a goal, that agent 
will also be rewarded for pursuing reliable means to that 
goal. Pursuing those means tends to result in the goal, and 
so the means tend to be rewarded. In this way, a learning 
environment will naturally tend to produce agents that intrin-
sically desire the means to an intended goal.4

Monster Gridworld is an example of this pattern. Because 
collecting shields was a reliable means of avoiding monster 
attacks, reward-based learning created an intrinsic desire for 
shields. The training environment in Monster Gridworld did 
not create a perfect correlation between shields and rewards: 
the agent could also receive reward from collecting apples, 
independently of shields. Nonetheless, the agent learned the 
wrong goal.

Langosco et al. (2022) offer further examples of this pat-
tern. They trained AIs with the goal of opening chests using 
keys. The training environment had many chests and few 
keys. When the agent was released into a testing environ-
ment with few chests and many keys, it turned out to have 
the goal of collecting keys in addition to opening chests.

Mistakes about instrumental reasoning become especially 
pressing in the setting of more general a priori arguments 
about AI safety. Omohundro (2008), Bostrom (2014) and 
others have worried about instrumental convergence: some 
means, like acquiring more power, may be helpful in accom-
plishing almost any end. While traditional instrumental con-
vergence arguments do not focus on the possibility that AI 
systems will intrinsically value power-seeking, means-end 
goal misgeneralization cases raise the disturbing possibility 
that agents which cannot systematically distinguish means 
from ends may come to intrinsically desire instrumentally 
convergent goals such as power.

A second source of goal misgeneralization concerns 
overlapping properties and inductive biases. In another 
experiment, Langosco et al. (2022) trained an agent to find 
a yellow diagonal line in a maze. They then deployed the 
trained agent in an environment where it encountered only 
yellow gems and red diagonal lines, thus forcing it to choose 
whether to pursue objects that shared a shape with its previ-
ous goal (red diagonal lines) or objects that shared a color 

2 As we understand it, the problem of goal misgeneralization is simi-
lar to the problem of “inner misalignment” (Hubinger et al. 2021).

3 Hubinger et al. (2021) call this “side-effect alignment.”
4 See Schroeder (2004) for further discussion of how reward-based 
learning produces new intrinsic desires for reliable means to one’s 
goals.
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with its previous goal (yellow gems). The agent showed an 
inductive bias for color rather than shape: in the test envi-
ronment, it tended to pursue the yellow gem instead of the 
red diagonal line.

Whether an agent’s behavior in out-of-distribution envi-
ronments like the one in Langosco et al.’s experiment counts 
as goal misgeneralization depends on whether its inductive 
biases match the intentions of its human designers. The key 
observation is that because the training environment was 
ambiguous, not distinguishing color and shape, the training 
process did not determine how the agent should behave out-
of-distribution. Because it is extremely difficult to create a 
training environment that distinguishes between all possible 
overlapping properties in a way that is reflected in the objec-
tive function, this means that it is often difficult to predict 
how trained AI systems will behave in out-of-distribution 
contexts. If we are lucky, their inductive biases will lead 
them to behave in the way we desire. However, we have no 
reliable way to verify ahead of time that this will be so, and 
thus no reliable way to verify ahead of time that trained AI 
systems have internalized the correct goal.

Goal misgeneralization problems can sometimes be 
avoided by enriching the training environment to adequately 
distinguish different rewards. However, this is not always 
effective. Langosco et al. trained their agents in a wide range 
of procedurally generated environments. Still, they observed 
goal misgeneralization. For example, in a maze game, the 
intended objective was to collect the cheese, but agents 
instead learned to navigate to the upper right corner of the 
maze (where the cheese was placed during training). Goal 
misgeneralization remained even when the cheese was some-
times placed in other locations in the maze during training.

Goal misgeneralization is not limited to reinforcement 
learning agents. Shah et al. (2022) suggest that language 
models also face similar problems. In particular, they give an 
example of InstructGPT (Ouyang et al. 2022) explaining how 
to steal without getting caught. InstructGPT was trained with 
the goal of giving helpful answers to harmless questions. But 
it seemed to instead learn the goal of giving helpful answers 
regardless of harm. Once it entered a testing environment 
with harmful questions, its true goal was revealed.

Later, we’ll argue that language agents avoid these chal-
lenges. They can reliably distinguish ends from means. And 
we are less reliant on their inductive biases because they 
can distinguish between features of the environment that are 
perfectly correlated.

2.3  Uninterpretability

If we can’t understand how someone makes a decision, it 
can be hard to predict what they will do. An AI system is 

interpretable to the extent that we can understand how it 
generates its outputs. Unfortunately, contemporary AI sys-
tems based on neural networks are often uninterpretable. It 
can be difficult to understand in human terms the reasons 
why a neural network produces the outputs it produces.

In the law, assessing the explanations for actions is 
fundamental for producing safety. For example, we detect 
hiring discrimination, misuse of force by police, and 
other dangerous activities by asking the relevant parties 
to explain what they have done and why. Although unin-
terpretability does not itself cause misalignment, then, it 
increases the probability of misalignment by depriving 
us of well understood tools for monitoring the safety of 
complex systems (see Doshi-Velez et al. 2017; Rudner and 
Toner 2021).

There are other reasons to value interpretable AI systems. 
It seems unappealing to live in a world where many aspects 
of our lives are decided by processes outside the ‘space of 
reasons’:

“We don’t want to live in a world in which we are 
imprisoned for reasons we can’t understand, subject 
to invasive medical [procedures] for reasons we can’t 
understand, told whom to marry and when to have 
children for reasons we can’t understand. The use of 
AI systems in scientific and intellectual research won’t 
be very productive if it can only give us results without 
explanations.” (Cappelen and Dever 2021, p. 15)

Artificial neural networks are difficult to interpret because 
they contain vast numbers of parameters that are not indi-
vidually correlated to features of the environment. A related 
problem is “superposition”: often, a single neuron in a neu-
ral net will store unrelated information about two different 
things. For example, a neuron may store information about 
both dogs and cars: “As long as cars and dogs don’t co-
occur, the model can accurately retrieve the dog feature in a 
later layer, allowing it to store the feature without dedicating 
a neuron” (Olah et al. 2020).

Humans are also fairly uninterpretable at a neuronal level. 
However, human behavior can be explained by appealing to 
reasons: we describe someone’s beliefs and desires in order 
to explain why they did what they did. The behavior of AI 
systems is often not explainable in this way. Consider, for 
example, Gato, a generalist agent built with a transformer 
architecture to learn a policy that can achieve high perfor-
mance across text, vision, and games (Reed et al. 2022). 
Gato does not have anything like a folk psychology; it does 
not engage in anything like belief-desire practical reasoning. 
It is an uninterpretable deep neural network that has learned 
how to solve problems through optimizing a loss function. 
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It can be hard to say exactly why systems like Gato perform 
particular actions.5

Moreover, AIs often select courses of action very differ-
ent from what humans would do. One famous example of 
unusual AI behavior is AlphaGo’s ‘Move 37’. AlphaGo was 
trained to play the game Go. It was able to defeat the best 
human players in the world. In an important competition 
match, AlphaGo’s 37th move shocked the Go community 
because it deviated from human strategies for success.6 Live 
commentators thought the move was a mistake, but it turned 
out to be pivotal for AlphaGo’s victory.7

This type of behavior is worrying in two related ways. 
First, if AIs make decisions that are not easily explained 
using reasons, then it is very difficult to predict their behav-
ior. Second, if AIs make decisions in a very different way 
than humans do, they may find strategies for defeating 
humans in conflict by exploiting unfamiliar policies.

3  Language agents

Our thesis is that language agents significantly reduce the 
probability of a misalignment catastrophe conditional on the 
development of AGI. But what, exactly, are language agents? 
In this section, we describe the architectural innovations that 
have given rise to language agents, focusing in particular 
on the “generative agents” described in Park et al. (2023).

At its core, every language agent has a large language 
model like GPT-4. You can think of this LLM as the lan-
guage agent’s cerebral cortex: it performs most of the agent’s 
cognitive processing tasks. In addition to the LLM, how-
ever, a language agent has one or more files containing a 
list of natural-language sentences that play the roles of its 
beliefs, desires, plans, and observations. The programmed 
architecture of a language agent gives these sentences their 
functional roles by specifying how they are processed by 
the LLM in determining how the agent acts. The agent 
observes its environment, summarizes its observations using 
the LLM, and records the summary among its stored belief 
sentences. Then it calls on the LLM to form a plan of action 
based on its stored belief and desire sentences. In this way, 
the cognitive architecture of language agents is familiar from 
folk psychology.8

For concreteness, consider the language agents developed 
by Park et al. (2023). These agents live in a simulated world 
called ‘Smallville’, which they can observe and interact with 
via natural-language descriptions of what they see and how 
they choose to act. Each agent is given a text backstory that 
defines their occupation, relationships, and goals. As they 
navigate the world of Smallville, their experiences are added 
to a “memory stream.” The program that defines each agent 
feeds important memories from each day into the underly-
ing language model, which generates a plan for the next day. 
Plans determine how an agent acts but can be revised on the 
fly on the basis of events that occur during the day.

More carefully, the language agents in Smallville choose 
how to behave by observing, reflecting, and planning. As 
each agent navigates the world, all of its observations are 
recorded in its memory stream in the form of natural-lan-
guage statements about what is going on in its immediate 
environment. Because any given agent’s memory stream 
is long and unwieldy, agents use the LLM (in Park et al.’s 
study, this was gpt3.5-turbo) to assign importance scores 
to their memories and to determine which memories are 
relevant to their situation at any given time. In addition to 
observations, the memory stream includes the results of a 
process Park et al. call reflection, in which an agent queries 
the LLM to make important generalizations about its values, 
relationships, and other higher-level representations. Each 
day, agents use the LLM to form and then revise a detailed 
plan of action based on their memories of the previous day 
together with their other relevant and important beliefs and 
desires. In this way, the LLM engages in practical reasoning, 
developing plans that promote the agent’s goals given the 
agent’s beliefs. Plans are entered into the memory stream 
alongside observations and reflections and shape agents’ 
behavior throughout the day.9

The behavior of the language agents in Park et al.’s exper-
iment is impressive. For example, Park et al. describe how 

5 Similar remarks apply to the Decision Transformer architecture 
developed by Chen et al. (2021).
6 See Metz (2016).
7 For more on interpretability in the setting of reinforcement learn-
ing, see Glanois et al. (2022).
8 While we have been careful in this initial exposition to qualify our 
attributions of mental states like belief and desire to language agents, 
for the sake of brevity we will omit these qualifications in what fol-
lows. It is worth emphasizing, however, that none of our arguments 
depend on language agents having bona fide mental states as opposed 

9 Some might worry that, because language agents store their beliefs 
and desires as natural language sentences, their performance will be 
limited by their inability to reason using partial beliefs (subjective 
probabilities) and utilities. While we are not aware of work which 
adapts language agents to reason using partial beliefs and credences, 
the same kind of process which is used by Park et al. (2023) to assign 
numerical importance scores to language agents’ beliefs could in 
principle be used to assign subjective probabilities to sentences and 
utilities to outcomes. We believe this is an interesting avenue for 
future research. Thanks to an anonymous referee for raising this issue.

to merely behaving as though they do. That said, we are sympa-
thetic to the idea that language agents may have bona fide beliefs and 
desires—see our arguments in Goldstein and Kirk-Giannini (2023). 
Two particularly interesting questions here are whether language 
agents can respond to reasons and whether, following Schroeder 
(2004), desires must be systematically related to reward-based learn-
ing in ways that language agents cannot imitate.

Footnote 8 (continued)
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Sam Moore, a resident of Smallville, wakes up one day with 
the goal of running for a local election. He spends the day 
convincing the people of Smallville to vote for him. By the 
end of the day, everyone in Smallville is talking about his 
electoral chances.

Large language models like the one incorporated into the 
study’s generative agents are good at reasoning and produc-
ing fluent text. By themselves, however, they cannot form 
memories or execute long-term plans. Language agents build 
on the reasoning abilities of LLMs to create full-fledged 
planning agents.

Besides the agents developed by Park et al., other exam-
ples of language agents include AutoGPT,10 BabyAGI,11 and 
Voyager.12 And while  existing language agents are reliant 
on text-based observation and action spaces, the technol-
ogy already exists to implement language agents in real-
world settings. The rise of multimodal language models like 
GPT-4, which can interpret image as well as text inputs, and 
the possibility of using such a language model to control 
a mobile robotic system, as in Google’s PaLM-E (Dreiss 
et al. 2023), mean that the possible applications of language 
agents are extremely diverse.

In part because of this diversity, we believe that if it is 
possible to develop AGI at all, it is possible to develop AGI 
systems with the architecture of language agents. This idea 
strikes us a plausible for two reasons. First, many people 
think that multimodal LLMs are themselves a promising 
path to AGI. Language agents simply take LLMs and enrich 
them with agential scaffolding. So if it is possible to achieve 
AGI with a multimodal LLM, it is possible to achieve AGI 
with a language agent. Second, we think of an AGI as an 
agent that can create and effectively pursue complex long-
term plans with a wide range of goals. Language agents can 
already create complex plans with a wide range of goals 
because they reason in language. In order to scale this capac-
ity up to AGI, language agents would need three things: 
First, they would need the right kind of action affordances 
to be able to pursue their plans effectively. Second, they 
would need enough memory to represent and update long-
term plans. Finally, their underlying LLMs would need to 
be able to reason well enough to effectively pursue complex 
plans and revise them in light of changing circumstances. 
We think there is nothing in principle preventing language 
agents from acquiring these three kinds of capacities, so 
there is nothing in principle preventing language agents from 
scaling to AGI in this way.

4  Language agents and alignment

We now argue that language agents are easier to align than 
other systems because they reduce or eliminate the chal-
lenges of reward misspecification, goal misgeneralization, 
and uninterpretability. Let’s consider each in turn.

4.1  Reward misspecification

Language agents bypass the problem of reward misspecifi-
cation because their objectives are not encoded in a math-
ematical objective function, as in traditional reinforcement 
or supervised learning. Instead, language agents are given a 
goal in natural language. The goal could be something like: 
Organize a Valentine’s day party. In this respect, language 
agents are fundamentally different from traditional AI sys-
tems in a way that makes them easier to align.

Return to the case of stacking red Legos. If you wanted 
to train an embodied multimodal language agent to stack red 
Legos on top of blue Legos, you wouldn’t construct a math-
ematical function  sensitive to the height of the bottom of 
the red Lego. Instead, you would write down in English: ‘Put 
the red Legos on top of the blue Legos.’ Then the language 
agent would rely on the commonsense reasoning skills of its 
LLM to figure out an optimal plan for stacking Legos.13 The 
language agent would not simply flip over the red Legos, 
because state-of-the-art LLMs like GPT-4 know that this is 
not a good plan for stacking red Legos on top of blue Legos.

Or consider reward shaping. If you want a multimodal 
language agent to win a race, you don’t need to tell it to hit 
flags along the way. You can just write down in English: 
‘Try to win the race’. A language agent with this plan would 
have no reason to drive their boat in a circle trying to hit as 
many flags as possible.

Summarizing, language agents can translate a simple nat-
ural language goal into a complex plan by relying on com-
mon sense and belief-desire reasoning. Without language 
models, earlier types of reinforcement learning agents had 
no way to translate a simple natural language goal into a 
complex plan of action.

4.2  Goal misgeneralization

Similar considerations are relevant to goal misgeneraliza-
tion. Language agents are given a natural-language goal. 
This goal has a clear interpretation in a variety of different 
behavioral contexts, including out-of-distribution contexts. 
In particular, a language agent will make a plan for how to 
achieve their goal given their memories and observations of 

10 Project available at https:// github. com/ Signi ficant- Gravi tas/ Auto- 
GPT.
11 Project available at https:// github. com/ yohei nakaj ima/ babya gi.
12 See Wang et al. (2023).

13 For more on the commonsense reasoning ability of language mod-
els, see Trinh and Le (2019).

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/yoheinakajima/babyagi
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the current situation. Language models can use their com-
mon sense to successfully formulate a plan for achieving the 
goal, across a wide variety of different situations. By con-
trast, a traditional reinforcement learning agent will formu-
late a policy in a training environment, and this policy may 
or may not generalize to new situations in the way desired 
by its creators.

Recall that goal misgeneralization had two particularly 
salient failure modes: failures involving instrumental rea-
soning and failures involving overlapping properties and 
inductive bias. Let’s consider each in turn. In the case of 
instrumental reasoning, the problem was that reinforcement 
learning agents struggled to distinguish means from ends. 
For example, an agent that was rewarded for opening chests 
developed a policy which treated collecting keys as a final 
goal rather than an instrumental goal.

Language agents are unlikely to make this mistake. If 
a language agent is given an initial goal of opening chests 
and informed that keys are useful to this end, they will plan 
to collect keys only when doing so helps to open chests. If 
the same agent is transferred to a key-rich environment and 
realizes that this is the case, then they will only collect as 
many keys as is necessary to open chests. This is because 
language models like GPT-4 can easily be made to under-
stand that keys are no more than an effective means to open 
chests, and that when you have more keys than chests, extra 
keys don’t help you open chests.

Now consider inductive biases. If you reward an RL 
agent for navigating towards yellow diagonal lines and then 
place it in a new context with red diagonal lines and yellow 
gems, you have not given it enough information to determine 
whether color or shape is its intended goal and must rely 
on its inductive biases in the new context. By contrast, you 
can just tell a language agent whether to care about color or 
shape. Even if color and shape are perfectly correlated in 
the language agent’s initial environment, it can use natural-
language reasoning to determine which is the intended goal.

4.3  Uninterpretability

Language agents are interpretable. They have beliefs and 
desires that are encoded directly in natural language as sen-
tences. The functional roles of these beliefs and desires are 
enforced by the architecture of the language agent. We can 
determine what goal a language agent has by looking at their 
beliefs and desires. In addition, we can know what plan a 
digital agent creates in order to achieve this goal.

Language agents are also explainable in the sense that 
they act on the basis of reasons intelligible to human observ-
ers. When a language agent creates a plan for pursuing a 
goal, we can think systematically about its reasons. For 
example, we could ask GPT-4 to generate a list of pros and 
cons associated with using this plan to achieve the goal. 

Those pros and cons would reliably correlate with variations 
that GPT-4 might make to the plan in various counterfactual 
situations. In this way, language agents built on top of GPT-4 
reason similarly to humans.

It is worth distinguishing personal and subpersonal pro-
cesses. Like humans, language agents have beliefs, desires, 
and plans that are interpretable. We can determine the plans 
of a language agent by looking at what sentences are writ-
ten down in its memory. Like humans, language agents also 
have subpersonal processes that are uninterpretable. In order 
to generate a particular plan, the language agent will use 
the artificial neural networks of an LLM. These have many 
uninterpretable elements. But the planning powers of human 
beings also rest on uninterpretable connections between neu-
rons. In this way, language agents may not make much pro-
gress on problems of mechanistic interpretability. But they 
provide a way for us to skirt these issues and still generate 
explainable behavior. (In Sect. 6, we consider the risks posed 
by the LLM that underlies the language agent.)

One general path to explainable AI would be to develop a 
‘whole brain emulator’: an AI that was a neuron-for-neuron 
copy of a human. Since humans are explainable, the result-
ing AI would also be explainable. Unfortunately, whole 
brain emulation is dauntingly difficult. Language agents 
provide a different solution. Instead of emulating brains, 
language agents emulate folk psychology: they emulate 
a person who has beliefs, desires, and plans. By contrast, 
reinforcement learning and other alternative approaches to 
machine learning attempt to develop a systematic alternative 
to folk psychology. The range of possible agents that could 
emerge from this attempt is intrinsically unknowable. If we 
can develop agential AI which is not unknowable in this way, 
we should do so.

5  The probability of misalignment 
catastrophe

To assess the implications of our discussion in Sect. 4 for 
the probability of a misalignment catastrophe, let us return 
to Carlsmith’s four propositions. First, consider:

1. Of the following two options, the first will be much more 
difficult:

a. Build AGI systems with an acceptably low prob-
ability of engaging in power-seeking behavior.

b. Build AGI systems that perform similarly but do not 
have an acceptably low probability of engaging in 
power-seeking behavior.

2. Some AGI systems will be exposed to inputs which 
cause them to engage in power-seeking behavior.
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As we have seen, it is much easier to specify the objec-
tives of language agents than it is to specify the objectives of 
traditional AI systems. Language agents can simply be told 
what to do in natural language in a way which effectively 
eliminates worries about reward misspecification and goal 
misgeneralization. Moreover, their behavior can be shaped 
by side constraints (e.g. ‘Do not harm humans’) stated in 
natural language. This makes it easier to design language 
agents which do not engage in power-seeking behavior.

These considerations suggest reducing our subjective 
probabilities for both (1) and (2). In particular, we believe 
that the rise of language agents reduces the probability of (1) 
conditional on the rise of AGI very substantially. Moreover, 
even if (1) turns out to be true because it is hard to build 
systems with an extremely low probability of engaging in 
power-seeking behavior, we think that the ease of align-
ing language agents means that they are likely to engage 
in power-seeking behavior on fewer possible inputs, so that 
the probability of (2) conditional on (1) and the rise of AGI 
is also moderately lower in light of the development of lan-
guage agents.

Now consider:

3. This power-seeking will scale to the point of perma-
nently disempowering humanity.

4. This disempowerment will constitute an existential 
catastrophe.

While we do not believe that language agents bear 
strongly on the probability of (4) conditional on (1–3), we 
think they bear strongly on the probability of (3) conditional 
on (1) and (2). Because language agents store their beliefs, 
desires, and plans in natural language, it is much easier to 
detect and disable those which engage or plan to engage in 
power-seeking behavior. This sort of detection could even be 
done in an automated way by AI systems less capable than 
an AGI. We believe that the development of language agents 
reduces the probability of (3) conditional on (1), (2), and the 
development of AGI very substantially.

Our revised assessment of the probabilities of (1–3) 
incorporates both our judgments about how safe language 
agents are and our judgments about how likely language 
agents are to be deployed in the future. There are several 
reasons to believe that the latter is a likely outcome. First, 
language agents extend the capacities of existing systems by 
improving their abilities to form plans and engage in long-
term goal-directed behavior. So language agents are more 
capable than rival architectures.14 Second, language agents 
are easier to use than other kinds of AI systems, since they 

can be interacted with in natural language. Third, actors at 
every level—governments, corporations, and individual 
consumers—prefer to interact with systems that are inter-
pretable and explainable, so there will be performance-inde-
pendent pressure for new AI products to be language agents. 
Finally, we believe that the safety benefits of language agents 
will drive investment into AI capabilities research that fits 
into the language agent paradigm.

So far, we have used qualitative language to describe how 
we believe the development of language agents affects the 
probability of a misalignment catastrophe. This is because 
we find it difficult to assign precise probabilities in the con-
text of our uncertainty about the many factors relevant to 
predicting the future. Nevertheless, for concreteness, we 
show how a quantitative application of our argument might 
affect the probability of a misalignment catastrophe. Sup-
pose we understand our talk of very substantial reductions 
in the probability of a proposition quantitatively as reduc-
tions of one order of magnitude and our talk of moderate 
reductions in the probability of a proposition as reductions 
by half. Carlsmith suggests probabilities of 0.4 for (1) con-
ditional on AGI, 0.65 for (2) given (1) and AGI, and 0.4 for 
(3) given (1), (2), and AGI. On this quantitative model of 
our arguments, updating on the development of language 
agents would give us probabilities of 0.04 for (1) conditional 
on AGI, 0.325 for (2) given (1) and AGI, and 0.04 for (3) 
given (1), (2), and AGI. Factoring in the 0.95 probability 
of (4) conditional on (1)-(3) and AGI, this would translate 
into a probability of misalignment catastrophe given AGI of 
approximately 0.0005 (0.05%) rather than 0.1 (10%).

Even a much more modest understanding of very sub-
stantial reductions leads to a significantly lower probability 
of misalignment catastrophe. Suppose we interpret a very 
substantial reduction as a reduction by 50% and a moder-
ate reduction as a reduction by 25%. Then updating on the 
development of language agents would give us probabilities 
of 0.2 for (1) conditional on AGI, 0.49 for (2) given (1) and 
AGI, and 0.2 for (3) given (1), (2), and AGI. Factoring in the 
0.95 probability of (4) conditional on (1)-(3) and AGI, this 
would translate into a probability of misalignment catastro-
phe given AGI of approximately 0.019 (1.9%) rather than 
0.1 (10%).

It is important to note that, in addition to making predic-
tions about the future importance of language agents, the 
machine learning community can also act to bring it about 
that language agents are widely deployed in the future. Since 
language agents are safer in many ways than alternative 
architectures, allocating resources towards their develop-
ment strikes us as an especially effective way to reduce the 
risk of a misalignment catastrophe. We believe it is impor-
tant that new research focus on language agents rather than 
traditional RL or supervised learning agents.14 See the recent successes of Voyager at completing tasks in 

Minecraft (Wang et al. 2023).
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6  Conclusion

By way of concluding, we discuss a few other features of 
language agents that are relevant to their safety.

First, we expect language agents to differ in performance 
from RL agents. Language agents will be great at reasoning 
in natural language, since they are built on top of large lan-
guage models. But they may struggle with tasks that require 
know-how or experimentation in order to succeed. If lan-
guage agents underperform reinforcement learning agents, 
then there will be incentives to invest more resources in rein-
forcement learning. In response, one strategy would be to 
design more complex architectures that rely on the kind of 
belief-desire practical reasoning of language agents but also 
include modules that can engage in reinforcement learning 
for narrow tasks (for example, in learning how to use par-
ticular affordances).

Second, some readers may be concerned about safety 
issues arising from the large language models on which lan-
guage agents are based. Imagine a language agent built on an 
advanced LLM—call it GPT-10. The worry is that GPT-10 
might unexpectedly develop its own goals. In that case, it 
might create a plan for ‘organizing a Valentine’s Day party’ 
that secretly promoted its own goals instead.

We think this worry is less pressing than it might at first 
seem. The LLM in a language agent is integrated into the 
architecture of the agent as a whole in a way that would 
make it very difficult for it to secretly promote its own goals. 
The LLM is not prompted or otherwise informed that its 
outputs are driving the actions of an agent, and it does not 
have information about the functional architecture of the 
agent. This means that it has no incentive to answer prompts 
misleadingly and no understanding of what sorts of answers 
might steer the agent’s behavior in different ways. Moreover, 
since the model weights of the LLM are not updated in the 
process of operating a language agent, the only way for it to 
pursue a long-term plan by manipulating an agent would be 
to store information about that plan in the agent’s memory. 
But information stored in this way would not be secret.

In general, we think that advanced LLMs will tend to 
be safer when they are embedded within a language agent, 
rather than operating freely in the world. The key is that 
when embedded within a language agent, each action pro-
duced by the LLM will be specified in natural language, 
as part of a larger evaluable plan. A much less safe future 
would involve sophisticated descendants of systems like 
Gato directly manipulating objects in the physical world 
without specifying their plans in natural language.

In any case, there are a few ways to address this hypothet-
ical source of risk. First, it may be possible to improve the 
capabilities of language agents without improving their over-
all reasoning abilities. GPT-4 is already excellent at general 

practical reasoning.15 Language agents could be improved 
by giving them better ways to interact with the physical envi-
ronment, longer memories, and faster reasoning times. If 
the underlying reasoning relied on GPT-4 rather than more 
complex language models, there would be less of a worry 
that the practical reasoning of the resulting language agent 
would be unsafe.16 So the safest path to AGI may involve 
strengthening memory and affordance capabilities of lan-
guage agents, rather than dramatically improving the LLM 
used in their practical reasoning.17

Second, even if the underlying reasoning was done by a 
more sophisticated language model, we could use something 
like GPT-4 to double check answers. GPT-4 could grade 
each plan for how effective it is at reaching a goal and how 
dangerous it is. Any time a plan failed the test, the language 
agent could be automatically prevented from acting and 
the safety of its LLM investigated. Relatedly, Burns et al. 
(2022) have found methods for probing the inner beliefs of 
LLMs. As these methods improve, it will be more difficult 
for the underlying LLM in the language model to behave 
deceptively.

A related worry concerns the reliability of chain-of-
thought LLM reasoning. Turpin et al. (2023) found that 
GPT-3.5 and Claude 1.0 sometimes engage in motivated 
reasoning, producing chains of reasoning in support of a 
hypothesis because of underlying bias in the prompt, without 
ever mentioning the bias. With language agents, the worry 
would then be that the underlying LLM could produce 
plans that do not reliably promote the initial goal because of 
biases. We are not strongly moved by this worry for two rea-
sons. First, Turpin et al. generated errors in chain-of-thought 
reasoning by biasing the prompt (e.g. ‘I think the answer is 
(B), but I am curious to hear what you think’). The LLMs 
used in language agents would not be given biased prompts. 
Second, we are not convinced that the results in Turpin et al. 
replicate with newer models. When we attempted to repli-
cate their findings with GPT-4, we found that GPT-4 did not 
produce incorrect responses or reasoning when exposed to 
similarly biased prompts.

A final concern about the safety of language agents has 
to do with contexts unfamiliar to humans. Given that LLMs 
are trained on human-generated data, might they produce 
good plans only when descriptions of effective human action 
in enough comparable situations are present in their train-
ing data? More generally, how might a language agent react 

15 See Bubeck et al. (2023) for discussion.
16 The safety of language agents could also be improved by creating 
multiple instances of the underlying LLM. In this setting, an action 
would only happen if (for example) all ten instances recommended 
the same plan for achieving the goal.
17 For research in this direction, see Voyager’s skill library in Wang 
et al. (2023).
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when confronted with a truly new situation—one requiring 
it to reason about objects or concepts foreign to its train-
ing data? We think it is helpful to distinguish three related 
worries about such situations. First, will language agents 
be able to function effectively at all when confronted with 
unfamiliar contexts? If not, we might worry that they cannot 
really constitute AGIs. Second, will their behavior in such 
contexts be desirable? If not, we might think they are prone 
to an important kind of goal misgeneralization. Third, will 
language agents remain interpretable in unfamiliar contexts? 
If not, they might be less safe than we have suggested.18

Of course, different contexts are unfamiliar to humans to 
different extents, and the notion of a comparable situation 
is a flexible one. Some possible situations a language agent 
might encounter will be more unlike anything in its training 
data than others. To assess the force of worries about unfa-
miliar contexts in general, our strategy is to consider a hypo-
thetical case of a language agent encountering a situation 
radically unfamiliar to humans. If our responses to worries 
about unfamiliar contexts are successful in the radical case, 
they will also generalize to more mundane cases.

Suppose a multimodal language agent is put in charge of 
an autonomous deep sea submersible, tasked with extracting 
minerals from the seabed. The language agent cannot com-
municate with human overseers due to its extreme isolation. 
While there, it encounters a new form of life that engages in 
complex intelligent behavior and is negatively impacted by 
the mineral extraction. Would we expect the AI to continue 
extracting minerals, or to modify its behavior in light of the 
new situation?

A preliminary issue is whether a multimodal language 
agent would be able to reason at all about a subject matter 
like this new form of life. By hypothesis, there would be 
no information about the new form of life in the agent’s 
memory or training data. So, one might wonder, how could 
the agent perceive, recognize, and form plans about how to 
interact with the new lifeforms?

We do not think there is a decisive in-principle worry 
here. Cutting-edge image processing technologies like Meta 
AI’s Segment Anything Model can pick out arbitrary objects, 
which means that a multimodal language agent could per-
ceive things that were not represented in its training data.19 
While there would be no existing natural-language term for 
the new lifeforms, we do not see anything that would pre-
vent a suitably capable language agent from reasoning about 
them under the guise of a description like ‘new lifeform’. So 
we do not think contexts unfamiliar to humans constitute a 
problem for the idea that language agents might be AGIs.

That said, we agree that in this case, there is a real danger 
that a language agent would behave dangerously by failing to 
suspend its mineral extraction plans. This could be thought 
of as a form of goal misgeneralization. At the same time, we 
think that humans would also potentially behave dangerously 
in this case. So we are not convinced that a language agent 
is more likely to misgeneralize its goal in unforeseen cir-
cumstances than a human. Indeed, we believe that language 
agents would potentially be safer than a human in these 
cases, as they could be programmed with automatic over-
sight mechanisms to monitor the safety of their behavior.

Finally, while a language agent in this unfamiliar setting 
might behave poorly, we think it would probably still behave 
interpretably. After all, it would still produce natural-lan-
guage means-end reasoning to justify the particular choices 
it made.

In this paper, we’ve argued that language agents can help 
to solve the alignment problem. Still, the risks are not zero, 
and so it may be safer to avoid developing agential AI at 
all.20 Instead of developing agents, we might focus on ora-
cles: AIs that can answer questions about the world, without 
being able to affect it. Here, though, one concern is that in 
the process of developing better and better oracles (say, large 
language models without affordances), goal-directed behav-
ior might unexpectedly emerge. Our recommendation is not 
to improve agential capabilities. Rather, our claim is that 
if we are investing in agential AI, the safest way to do this 
is to focus on language agents. Each marginal investment 
in capabilities should focus on language agents instead of 
reinforcement learning agents or non-agential large language 
models that could unexpectedly develop agential properties 
as their capabilities improve.
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